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To extract valid results from time series analysis of tides observations, noise 

reduction is vital. This study aimed to use a precise statistical model to 

investigate noise types. Noise component amplitude of the proposed model 

was studied by Least Square Estimation (LS-VCE) through different statistical 

models: (1) white noise and auto-regressive noise, (2) white noise and Flicker 

noise, (3) white noise and random walk noise, (4) white noise and Flicker noise 

and random walk, and (5) auto-regressive noise and Flicker noise. Based on 

the values obtained for the Likelihood Function, it was concluded that the noise 

model that can be considered for observations of the Buoy time series includes 

two white and Flicker noises. In addition, tide forecasting for all stations was 

done by extracting important frequency calculated in two cases: (1) the first 

case in which matrix of observation weight matrix was considered as the unit 

matrix or the noise model was just a white noise (2) the case in which matrix 

of observation weight matrix was considered as a combination of white and 

Flicker noises. The results show that use of precise observation weight matrix 

resulted in 11 millimeter difference compared to the case in which observation 

with unit weight matrix was used. 
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1. Introduction 
Tides data are used for wide variety of application such 

as hydrography or navigation. Accordingly, data 

analyses and forecasting as well as knowledge of data’s 

structure and nature have been considered very 

important. The nature of tide’s data can be expressed 

by their fundamental frequencies; tide’s frequencies 

can be extracted by an observation-based method. To 

do this, a harmonic analysis of sea surface level by 

Fourier series expansion is utilized. Harmonic analysis 

is a very valuable method for tide data analysis. In this 

field Amiri-simkooie et al [1], has worked on 

extraction of tide’s data frequencies for the United 

Kingdom gauges. Mousavian and Mashhadi Hossienali 

[2] used single-variable analysis for this purpose. 

  One of the most important part of tide’s data is the 

noise structure which has not been studied properly yet. 

It’s worth noting that without enough information 

related to the tide’s data noises, frequency extraction 

will confront many problems. There are different 

approaches to study geodetic time series’ noises, such 

as: spectral power method [3] , Maximum Likelihoods 

Estimation [4], Limited Maximum Likelihoods 

Estimator [5], Minimum norm quadratic unbiased 

estimator [6,7], Best Linear Unbiased invariant 

quadratic estimator [8,9], Helmert method [10,11], 

Bayesian Estimation [12], and Least Square Estimation 

[13]. 

Because of the noise significant effect on the time 

series and this fact that time series can always be 

accompanied by noise, existence of the noise in time 

series must be studied carefully. The ideal condition is 

when the observations are independent. Time series 

may have spatial and temporal correlation. If the 

observations do not have temporal correlation, they 

have white noise. But in the time series derived from 
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buoy, temporal correlation is present, which means the 

existence of color noise in observations. Therefore, we 

must inevitably need to know the effects of other noise 

in observations. In the methods for estimating variance 

components, including MINQUE, BIQUE, Helmert, 

REML all relationships provide an estimate of the 

variance components based on the assumption that the 

observations have a normal distribution while LS-VCE 

avoids the assumption of normal distribution for 

observations. LS-VCE method is based on the least 

squares principle therefore it is very flexible and it is 

easy to apply the least squares theory in this method. 

Some of the features that make using of least squares 

method are as follow: In this method we can provide a 

general class of unbiased estimators that are 

independent of the distribution considered for 

observations, minimal variance estimators even for one 

class of observations with elliptical distribution can be 

presented. In this method, covariance matrix, the 

estimator variance is obtained directly and 

conveniently. LS-VCE provides a clearer geometric 

interpretation of least squares, the properties of matrix 

Normal and orthogonality are easily established, and 

unstable observations and statistical tests are presented 

easily by this method. Finally, we can study the 

structure of model as if the number of considered 

parameters is suitable for a model or not. In other 

words, other methods can be considered a special case 

of the LS-VCE method. Our observations may not 

follow the normal distribution and for this reason, in 

this paper, the LS-VCE method is used to estimate 

noise of time series derived from buoy observations. 

Next, in order to determine the noise structure of the 

data, the logarithm of the likelihood function which is 

based on the maximum likelihood method is used and 

the appropriate random model was studied using a valid 

statistical model [1,14,32]. 

To extract the tidal frequencies, many studies have 

analyzed sea level height with different methods such 

as the Fourier and wavelet. Historically, Fourier 

spectral analysis has been used to examine the global 

energy and frequency distributions of SSH time series 

[37]. Its popularity is due to the prowess of the method, 

as well as its simplicity of application. As a result, the 

term ’spectrum’ has become almost synonymous with 

the Fourier transform of time series [38]. Fourier 

analysis, however, exhibits some drawbacks in 

analyzing time series, which are unequally sampled or 

those with data gaps [39]. Filling the gaps with inverted 

data might be erroneous when large gaps present in the 

time series, or due to the approximation approach used 

for interpolation [40]. In this paper, we focus on time-

invariant base-functions to detect tidal frequencies 

using tidal observation analysis without predefining 

these frequencies. For this purpose, the Least Squares 

Harmonic Estimation (LS-HE) method is used.  Our 

motivation to select these techniques is: 1- they are not 

limited to evenly-spaced data nor to integer 

frequencies; 2- they allow us to detect common-modes 

of signals, in a least squares sense, and thus are very 

efficient in detecting cyclic patterns; and (3) they can 

be easily used for univariate and multivariate examples 

[1,43,32]. 

  In this study, Maximum Likelihood function values 

was expanded in multi variable states. All these 

methods, except spectral power, define observation’s 

covariance matrix. On the other words, all these 

methods estimate the noise’s amplitude in the 

observation random model, thus they are called 

variance component estimator methods. Precise 

estimation of observation weight matrix using 

variance-covariance estimation method plays an 

important role in tides component phase and amplitude 

as well as estimation of Mean Sea Level- Sea Surface 

Height(MSL-SSH). 

  proposed noise’s model confirms white and flicker 

noise for observation. After determination of 

observation weight matrix, tide forecasting for two 

months is done and compared in two different states: 

weighted and un-weighted. 
 

2. Methodology 
 

2.1. Noises Least Square Estimation Principal 

In this study, Least Square Estimation method is 

applied to estimate noise’s amplitude for tide’s data. 

Least Square Estimation method (In previous 

research, it was used for the noise assessment of GPS 

time series.) creates unbiased estimators with 

minimum variance. Different studies have used multi 

variable time series for noise’s amplitude analyzing 

[1, 14–29] . This method resulted in close estimation of 

real data in tide’s forecasting by considering 

dependency between different time series. As 

previously mentioned, we utilized Likelihood logarithm 

function based on Least Square Estimation method to 

determine the noise model that the equation has been 

expanded for multi-variable state. 
 

2.2. Univariate Least Square Noise Estimation 

Least Square Noise Estimation is presented at 1988 by 

Teunissen [13]. Equation (1) shows the linear model of 

observations.  
p

y k k

k=1

E(y) = Ax, D(y) = Q = s Q 
 

(1) 

 

In equation 1, E  and D are mathematical expectation 

and dispersion operators of observation respectively, 

A is design matrix of dimension m n , x  is unknown 

vector of dimension n  , y  is observations vector of 

dimension m  , ks  is variance of unknown unit weight, 

yQ  is covariance matrix of observations of dimension 
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m m  and , ( 1,2,..., )kQ k p are known co-factor 

matrices of models. The covariance matrix yQ   is 

considered as a definite-positive matrix and is 

represented as an unknown linear combination of 

known co-factor matrices 
kQ . Cofactor matrices are 

assumed to be symmetric so that sum of the series in 

equation (1) becomes a definite-positive matrix. The 

necessary condition for obtaining a regular solution in 

stochastic model, is that cofactor matrices are linearly 

independent. For more studies, the works of Amiri-

Simkooei and Xu et al. [1,30] are recommended. 

  Least square estimation from p dimensional vector, 

consist of unknown covariance in σ̂  random 

observation model can drive from equation.(2): 
 

1
σ̂ N l  

(2) 
 

where matrix N elements (with p p   dimension) 

and vector l  (with dimension of p) can be obtained as 

follows: 
 

-1 -1

kl y A k y A l

1
n = tr (Q P Q Q P Q )

2

 

 
(3) 

  

T -1 -1

k y k y

1
ˆ ˆl = e Q Q Q e, k,l = 1,2,...,p

2
 (4) 

 

Due to presence of yQ  in Eqs. (3) and (4), the elements 

of covariance matrix can be estimated by applying a 

recursive method. In this way, first we assign an initial 

value for covariance elements. Then new estimation 

value is replaced in each step. The repeat process 

continues till estimated values for covariance elements 

do not show significant changes. Since the σ̂  

estimators are driven by the least square method, the 

covariance matrix of estimated values can be obtained 

from inverse of normal matrix N as follows: 
 

-1

σ̂
Q = N 

 
(5) 

 

Accordingly, the σ̂  estimators precision can be 

calculated. 
 

2.3. Multivariate Least Square Noise Estimation 

The time series used have both temporal and spatial 

dependence.  For this reason, the multivariate method 

is used to analyze them [31]. If both time dependency 

and between series correlations were taken into 

account, the least square noise estimation method 

enables us to estimate all the parameters at once. In 

multi-variable method, several solutions were 

presented by Simkooie for random models [32]. 

  These solutions are: general model, specific 

(particular) model and more practical model. In this 

study, the more practical model is chosen where Q 

matrix is: 

 

p

k k

k=1

Q = s Q
 

(6) 

 

In this case matrix 
kQ and 

ks  coefficients are unknown 

and should be estimated by the least square noise 

estimation method. For this purpose, it is first assumed 

that matrix 
kQ  is known, then 

ks  coefficients is 

calculated using the following equation [32]: 
 

-1
ŝ = N l  

(7) 
 

Where matrix N elements (with p p   dimension) 

and vector l  (with dimension of p ) can be obtained as 

follows: 

-1 -1

kl A k A l

r
n = tr (Q P Q Q P Q )

2

 

 
(8) 

T -1 -1 -1

k k

1 ˆ ˆl = tr(E Q Q Q E Σ ), k,l = 1,2,...,p
2

 (9) 

 

If matrix   is unknown, the unknown model’s variable 

can be calculated in two steps: 1) calculating an 

estimation of matrix  , 2) estimating 
ks  coefficients 

by previous process. Matrix   estimation can be 

driven from the following equation: 
 

1

 = 
ˆ ˆ

ˆ
T

Q

m n

 


  

(10) 

 

Therefore, equation (9) will be rewritten as follows 

[32]: 

T T-1 -1 -1 -1

k k

m - n ˆ ˆ ˆ ˆl = tr(E Q Q Q E (E Q E) )
2  

(11) 

 

2.4. Random Model Determination for Univariate 

Time 

Before utilizing the least square noise estimation, it is 

necessary to specify the observation noise’s structure. 

An appropriate noise structure for random model can 

be achieved by employing w-test statistic and 

maximum likelihood logarithm function. 

In order to investigate the existence of different noises 

in the random model related to the time series, two 

assumptions are considered, the null hypothesis (
0H ) 

and alternative hypothesis  ( aH ) can be defines as 

follows [1]: 
 

2

0 y 1 0H : Q = σ Q  
 

(12) 

2

a y 1 0 yH : Q = σ  Q + C δ
 

(13) 

where 0Q  and yC  are known cofactor matrixes, 
2

1σ  is 

covariance’s parameter for the cofactor matrix 0Q , and 

 is the unknown covariance parameter. The w-test 

statistic equation for evaluating H0 versus aH

hypotheses is as follows [1]: 
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1
2

T -1 -11
y y y y2

1 1
y y y y2 2b

tr(C Q )y ê
2b

ˆ ˆ ˆ ˆe e e e

 ˆ ˆe Q [ C - Q ] Q e
w =

[ tr(C Q C Q ) - tr(C Q ) tr(C Q )]   



 (14) 

 

In this equation, b m n  is the degree of freedom of 

the functional model, and yQ , AP


 and ê  are calculated 

under null hypothesis. Matrix 
ê

Q


 is reflex inverse 

matrix of residual vectors covariance for A yê
Q P Q


  

driven from 
-1 -1

y yˆ ˆe e
Q Q Q Q  

 . In special cases that null 

and alternative hypotheses are defined using equations 

(15) and equations (16), equation (14) changes to 

equations (17) [1,2]:  
 

2

0 y wH : Q = σ I
 

(15) 

2
a y w yH : Q = σ I+ C δ  (16) 

 

 

1
2

T T

y y A

2 2

w y A y A y A y A

ˆ ˆ ˆ ˆb e C e - tr(C P ) e e
w=

σ [2b  tr(C P C P ) - 2btr(C P ) tr(C P )]



   
 

(17) 

The mathematical expectation and variances of this 

statistic under null hypothesis are equal to zero and one, 

respectively. To test 
0H versus 

aH hypotheses, 

Chebyshev's inequality can be used which is 

independent of distribution function [1]. 

  By implying cofactor matrix yC  for different noise’s 

types in equations (14) or (17), the presence possibility 

of them in dataset can be examined. The noise which is 

corresponded to maximum absolute vale of w-test 

statistic is chosen as current noise [1,33]. In fact, w-test 

statistic values under 0H hypothesis has great values 

that for any confidence interval in Chebyshev's 

inequality is greater than critical value. Accordingly, 

the alternative hypothesis is considered as noise model 

which has maximum deviation from 
0H hypothesis, 

and thus has the maximum w-test statistic value. 

  As mentioned above, maximum likelihood logarithm 

function is another method to examine data noise 

structure which is based on maximum likelihood. In 

this method, if observation vector y  has multi-variable 

normal distribution as follows: 
p

k k

k 1

y ~ N(Ax, Q )



 

(18) 

Then likelihood function logarithm related to vector y  

is [1]: 

T -1

y y

T -1

y y

  
m 1 1

ln L(y; x, σ)= - ln 2π - ln det (Q ) - (y-Ax) Q (y-Ax)
2 2 2

m 1 1
ˆ ˆ= - ln 2π - ln det (Q ) - e  Q  e

2 2 2



 (19) 

 

Unlike w-test method where observation noise’s type 

determination is done before amplitude estimation, this 

method estimates the different noise’s amplitude at the 

first step. Then their presence possibility in observation 

is evaluated. After estimation of different yQ  values 

for different yC  values, they are replaced in equation. 

(19). Finally, a yQ covariance matrix is chosen that 

provides the maximum value for likelihood function 

logarithm. 
 

2.5. Random model determination for multi-

variable time series 

If we aimed to determine noise’s structure by w-test 

statistic for multi-variable linear model in 

equation.(14), then 
0H and aH hypotheses are defined 

as follows:  

0 y mH : Q = Σ I
 

(20) 

a y m yH : Q = Σ ( + C )I 
 

(21) 

Where  is an unknown parameter. 

  Here, we expand w-test statistical equation from 

single-variable to multi-variable. To do this, it is 

enough to replace this multi-variable phrase in 

equation (14): 

y m y y

A r A

ˆê vec ( E ) , Q I , C C

P I P , m m r , n n r 

    

   
 

By this replacement and Kronecker multiple properties, 

equation (14) will be changed to equation (22): 

1
2

T T
1 1

y y A

2 2

y A y A y A y A

ˆ ˆ ˆ ˆb tr(E C E ) - r tr(C P ) tr(E E )
w =

[2b r tr(C P C P ) - 2r b tr(C P ) tr(C P )]

  

   

 
 (22) 

In this equation, ( )b m n r  is the degree of 

freedom. 

By use of likelihood function logarithm to determine 

multi-variable random model’s structure and use of the 

abovementioned replacements in equation (19), 

equation (23) can be driven: 

mr 1
ln L(y; x, σ) = - ln 2π - {m ln det ( ) +

2 2

r (m - n)
r ln det (Q)} - 

2



 (23) 

Where 

m yQ = I C 
 

(24) 

3. Numerical results 
This study aims to determine tide frequencies and the 

noise’s structure. For this purpose, we used 57 Buoy 

stations. The data has been selected for a time period of 

2005 to 2017 with 15-minute rate. The stations 

positions are shown in figure 1: 

 [
 D

ow
nl

oa
de

d 
fr

om
 ij

m
t.i

r 
on

 2
02

5-
06

-1
3 

] 

                               4 / 9

https://ijmt.ir/article-1-688-en.html


Saeed Farzaneh et al. / IJMT 2020, Vol (13); p.41-49 

 

45 

 
 

In the following, first, numerical results for tide 

frequencies detection by harmonic least square 

estimation is presented. Next, tide data noise’s 

structure is determined by the least square noise 

estimation. 

Since detection of spectral power for common 

frequencies between time series by multi-variable 

harmonic analysis is much easier than single variable, 

the results from least square multi-variable spectral 

power of frequencies from 57 Buoy stations data are 

presented in figure 2: 

 

Then, frequencies with greater spectral power are 

extracted. The maximum spectral power specified in 

Figure 2 is related to the main components of tides. 

These components include 2M , 2S , 1K , and 1O . 2M , 

the tidal component lunar half−day. Due to the 

proximity of the moon to the earth is the most 

important factor in creating tides. This component 

has a period of 12.42 hours and a speed of 28.948 

degrees per hour. The range of these components 

will be considered as an equal basis and other 

parameters are measured with respect to these 

components. 2S , the side component solar 

half−day. This component is the most influential 

component after 2M  and it's about the sun. The 

main features of this component are a 12-hour 

period, a speed of 30 degrees per hour and a range 

of 0.46. 
1K (the tidal component solar daily) and

1O (the tidal component lunar daily) are the most 

important components of the day. The range of 

daily components depends on the angle of 

inclination of the moon and with the change of the 

inclination of the moon, the amplitude also 

changes. When the moon passes through the 

equator, that is, at the angle of zero inclination, the 

amplitude of the daily components has its lowest 

value, and when the angle of inclination of the 

moon has its maximum value, the range of these 

components also increases. 1K component has a 

period of 23.93 hours and a speed of 15.041 

degrees per hour. And 
1O component has a period 

of 25.82 hours and a speed of 13.943 degrees per 

hour 
 

3.1 Tide observations noise's model 

In this section, we will determine tide data noise’s 

structure by multivariable time series least square noise 

estimation. According to equations (8), (9), we need to 

calculate the inverse of matrix Q for estimation of tide 

data noises by least square estimation. Due to lack of 

memory to store the information, calculation was not 

possible. Therefore, we used 2 hourly averaged data.  

Cofactor matrixes, dimensioned m m , can be 

obtained from the following equations where m is 

number of observations in time series. White noise 

cofactor matrix: 

m mQ = I   (25) 

Flicker’s cofactor noise matrix is defined as [34,35,36]: 

f

ij

9
                                      if      0  

8
Q          

9 log / log 2 2
(1 )       if      0   

8 24


 

 
    



 (26) 

 

Random walk cofactor matrix defined as below, where 

m is number of observations, T  is the whole time of 

observation per year and sf   is sample 

frequency[34,35,36]: 
 

rw sQ

1 1 1

1 2 2 m 1
      ; f

T

1 2 m



 
 

  
 
 
 

 (27) 

 

yC cofactor matrix for auto-regressive noise is: 

yC exp( )   (28) 

where | |j it t   τ 

 

Figure 2. least square multi-variable spectral power of 

frequencies from 57 Buoy stations data 

 

Figure 1. Buoy stations used in this study 
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As it is obvious, in auto-regressive cofactor matrix
yC , 

parameter   can have different values. 
 

3.2 Line fitting method 

To determine suitable α for autoregressive noise, there 

are other solutions than w-test statistic. Because of 

limitation in memory in w-test method and since the 

noise’s effect is more obvious on time series spectra 

with longer lengths, line fitting solution based on the 

least square method for power spectra chart is used to 

determine suitable value for α. In figure 2, if a line be 

fitted to middle and lower frequencies, line’s slope 

shows suitable value for α for autoregressive noise. To 

do this, spectra power values and frequencies logarithm 

should be first calculated. Moreover, in interval of long 

term frequencies to semi-day frequencies, a line be 

fitted to power spectra chart; the line’s slope shows 

suitable value for α in autoregressive noise for long 

period frequencies. 

  After data normalization, as shown in figure 3, the 

slope of fitted line to power spectra chart in middle and 

low frequencies equals to -1857614002477414 and in 

long to semi-day frequencies equals to -

0.960163273277107. 

 

(a) 

(b) 

 
(c) 

To increase the accuracy of data results, dataset is 

divided in two parts; low and middle frequencies from 

.020833333 to 3.9133367 days and long to half-day 

period from 3.817232 to 4.3837606e+03; the high and 

low interval is shown in figure 4. To determine noise’s 

model, likelihood function logarithm in equation (23) 

for different random model is calculated for these two 

parts. For this purpose, five different random models 

are considered and their likelihood function logarithm 

values are shown in Table 2. As can be seen in Table 1, 

likelihood function logarithm maximum value is 

related to combined Flicker and white noise models in 

random model. 

 
Table 1. likelihood function logarithm normalized values for 5 

random models for tide multivariable time series 

Noise model 

Likelihood 

function 

logarithm 

normalized 

values for low 

and middle 

frequencies 

Likelihood 

function 

logarithm 

normalized 

values for high 

to semi-days 

frequencies 
White + Flicker 2338.2285 218.9269 

White + 

Autoregressive 
-353.35441 -6027.3356 

White + Random 

Walk 
-3591.1898 -6091.2739 

White + Flicker + 

Random Walk 
-3455.9613 -5275.1757 

Flicker + 

Autoregressive 
-34.8323 106.220 

 

 

Figure 3. multivariable least square power spectra chart for 

57 Buoy stations with sample rate of 15 minutes. Red lines: 

fitted lines to the chart by least square method 
 

 

Figure 4. a, b and c, multivariable least square power 

spectra chart for 57 Buoy stations with sample rate 15 minutes 

in low and high periods intervals 
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According to the results in table 1, it can be concluded 

that tide date noises consist of: white noise + Flicker 

noise. If random model is considered as a combination 

of white and Flicker noises, their amplitude can be 

calculated by multivariable least square noise 

estimation method. 
ks values for   white and Flicker 

noises are estimated as 0.114262ws   and 

1.0496366ws  , respectively.  

  The calculated multivariable power spectra time 

series based on this random model is shown in figure 5. 

 
In order to evaluate precision of Buoy stations data, we 

predicted tides for 1-month interval. The results of this 

prediction in for the following two conditions are 

presented in Table (2), 1) assuming unit matrix for 

observation weight matrix or assuming white model as 

noise model and 2) combination of White and Flicker 

noises for weight matrix. As it can be seen, the latter 

condition (i.e. combination of White and Flicker noises 

for weight matrix) provided higher accuracy than the 

former one (i.e. assuming white model as noise model). 

Table 2. RMSE residuals value in weighted and non-weighted 

for 1-month prediction of tide Buoy station 

Weighted 

(Flicker+white) 
Non-weighted Station 

0.0829430 0.0934888 

 

RMSE(m) 

 

 

 

Figures 6 and 7 present charts for weighted and non-

weighted of 1-month prediction of tide Buoy station. 

Red diagram is related to real data and green diagram 

is related to the predicted data. 

 

 
 

4. Conclusions 
In this study, the tide observation noise’s structure was 

initially defined by the least square estimation. For this 

purpose, Buoy data obtained from 57 tide stations 

during the period of 2005 to 2017 was analyzed. The 

proper noise model for tide’s data was determined by 

likelihood function logarithm, and combination of 

white and Flicker’s noises. Next, the noise 

component’s amplitude was calculated using the least 

square estimation method. 

  Then, tide prediction for a duration of 1 month was 

conducted in two conditions: 1) Assuming unit matrix 

for observation weight matrix or assuming white model 

as noise model and 2) combination of White and 

Flicker noises for weight matrix. The results show that 

use of precise observation weight matrix resulted in 1 

millimeter difference compared to the case in which 

observation with unit weight matrix was used. 
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